هناك خمس طرق شائعة للتحليل الإحصائي كالتالي:
أولًا: المتوسط
يعدّ المتوسط أبسط أشكال التحليل الإحصائي وهو يهدف إلى تحديد النقطة المركزية لمجموعة البيانات، ويتم حسابه كالتالي:
المتوسط = مجموعة الأرقام ÷ عدد العناصر
مثال: إذا أردنا استخراج المتوسط من الأرقام التالية 1,2,3,4,5,6 فإننا سنقوم بجمع هذه الأرقام معًا، ثم نقوم بقسمته على عدد وهو 6 أرقام ليكون المتوسط هو 3.5ويتميز المتوسط بكونه سهل الحساب ويساعد في تحديد الاتجاه العام للبيانات، أما عيوبه تظهر حينما تكون البيانات الخاضعة للتحليل تحتوي على عدد كبير من القيم المتطرفة أو التوزيع المنحرف لا يوفر المتوسط في هذه الحالة الدقة، التي نحتاجها لاتخاذ القرار.
ثانيًا: الانحراف المعياري
يقيس الانحراف المعياري كيفية انتشار البيانات حول المتوسط، وعندما يكون الانحراف المعياري عالي هذا يعني أن البيانات تتشتت على نطاق واسع عن المتوسط، بينما يكون الانحراف المعياري منخفض عندما تكون معظم البيانات أقرب إلى المتوسط. من عيوبه أنه مثل المتوسط تمامًا يمكن أن يعطينا بيانات غير دقيقة.
مثال للانحراف المعياري: عند القيام باستطلاع رأي أو استمارة استبيان تجاه خدمة معينة أو منتج، يمكنك تحليل النتائج الخاصة بإجابات المبحوثين، ومن ثم قياس مدى تشابه أو اختلاف الإجابات، فإذا كان التشابه كبير هذا يعني أن الانحراف المعياري منخفض والعكس صحيح.
ثالثًا: الانحدار
يستخدم الانحدار لإيجاد العلاقة التي تربط بين متغير مستقل وآخر تابع، حيث يساعد في تتبع كيفية تأثير المتغيرات على بعضها، ويوضح الانحدار مدى قوة أو ضعف العلاقة بين متغيرين وكيفية اختلافها من فترة لأخرى.
رابعًا: اختبار الفرضيات
نستخدم اختبار الفرضيات حينما نريد التأكد من أن استنتاج ما صالحًا لمجموعة بيانات محددة خلال مقارنة البيانات مع افتراض معين، من الممكن أن تكون هناك علاقة بين المتغيرات أو لا تكون على الإطلاق وهو ما يعرف بالفرضية الصفرية. مثال: يمكن أن نستخدم اختبار الفرضيات لمعرفة العلاقة بين نوع الغذاء والحالة الصحية أو بين التحصيل الدراسي والتقدم في العمر، ويمكن أن تكون الفرضية الصفرية لا توجد علاقة بين التقدم في العمر والتحصيل الدراسي وهكذا.
خامسًا: تحديد حجم العينة
عادةً ما يكون المجتمع الأصلي الذي نجري عليه البحث كبير جدًا وهو ما يشكل صعوبة في إجراء البحث على جميع مفرداته. لذا نلجأ إلى اختيار عينة ممثلة عن المجتمع الأصلي ثم نعمم النتائج عليه، وهذا ما نطلق عليه تحديد حجم العينة، ولكي يتم ذلك بشكل صحيح نحتاج لتحديد الحجم المناسب للعينة لتكون معبرة عن المجتمع الأصلي ودقيقة، ولتحقيق ذلك نقوم بأخذ عينات لأن العينات الصغيرة قد لا تكون معبرة، أما العينات الكبيرة قد تكون إهدار للوقت والجهد والمال، من هنا تنبع أهمية العينات في التحليل الإحصائي، فهي الفيصل في صدق وصحة النتائج من عدمه.