الوسط الحسابي للأعداد 3 ، 5 ، 6 ، 6 هو (3 + 5 + 6 + 6) ÷ 4 = 20 ÷ 4 = 5 ← (1)
نضيف 2 إلى كل عـــدد 5 ، 7 ، 8 ، 8 هو (5 + 7 + 8 + 8) ÷ 4 = 28 ÷ 4 = 7 وهو الوسط السابق(5) + 2 أي 5 + 2
نطرح 2 من كل عــــدد 1 ، 3 ، 4 ، 4 هو (1 + 3 + 4 + 4) ÷ 4 = 12 ÷ 4 = 3 وهو الوسط السابق(5) – 2 أي 5 – 2
نضرب 2 في كل عـــدد 6 ، 10 ، 12 ، 12هو (6 + 10 + 12 + 12) ÷ 4 = 40 ÷ 4 = 10 وهو الوسط السابق × 2 أي 5 × 2
نقســم 2 على كل عـدد 1.5 ، 2.5 ، 3 ، 3 هو (1.5 + 2.5 + 3 + 3) ÷ 4 = 10 ÷ 4 = 2.5 وهو الوسط السابق ÷ 2 أي 5 ÷ 2
بناء على ما سبق نقول أن الوسط الحسابي يتأثر بالعمليات الأربع المعروفة ( + ، – ، × ، ÷) بل كل العمليات التي تجرى على تلك الأعداد تقع على الوسط الحسابي
فإذا قلنا جمعنا 3 لكل عدد ثم ضربن النواتج في 4 لأصبح الوسط الحسابي الجديد بعد ذلك يساوي (الوسط الأصلي + 3) × 4 أي:
الوسط الحسابي الجديد = (5 + 3) × 4 = 8 × 4 = 32 بمعنى:
الأعداد بعد الإضافة للعدد 3 هي 6 ، 8 ، 9 ، 9
الأعداد بعد الضرب × 4 للأعداد الجديدة هي 24 ، 32 ، 36 ، 36
الوسط الحسابي الجديد = (24 + 32 + 36 + 36) ÷ 4 = 128 ÷ 4 = 32
تنبيه2:
مجموع انحرافات القيم (الوسط الحسابي – القيمة) عن وسطها = صفر مما يجعل الوسط الحسابي نقطة اتزان لتلك القيم
من (1) (5 – 3) + (5 – 5) + (5 – 6) + (5 – 6) = 2 + صفر + (– 1) + (– 1) = 2 – 2 = صفر
مثال (7): إذا كان الوسط الحسابي لدرجات 7 طلاب هو 60 وبعد المراجعة تم استبعاد طالب واحد حصل على الدرجة 30 فهل يتأثر الوسط الحسابي؟ وما قيمة الوسط الحسابي الجديد؟
الحـــــــل:
يتأثر الوسط الحسابي لنقص في عدد الطلاب ليصبح 6 بدل من 7 وعليه يكون:
نعلم أن: مجموع القيم = وسطها الحسابي × عددها من القانون التالي بعد ضرب الطرفين في الوسطين
مجموع القيم لسبعة طلاب = 60 × 7 = 420
نقص عدد الطلاب إلى 6 بعد استبعاد طالب ونقص مجموع الدرجات إلى 420 – 30 (درجة الطالب المستبعد) = 390
الوسط الحسابي الجديد = 390 ÷ 6 = 65